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Measurement of gas compounds

Principle of FTIR measurement
Calibration of FTIR

Principle of GC measurement
Calibration of GC




FTIR spectroscopy

FTIR spectroscopy 1s an analytical method based on the
interactions between IR light and matter.
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Molecular Energy State

The energy state of a molecule can be written as:

E = Eelectronic + Evibrational + Erotational
IR spectroscopy
Vibrational spectroscopy
CO, vibration modes:
A B
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How are IR light and molecules interacting?
IR light absorbed
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F'TIR spectroscopy

. Only the wvibrational transitions inducing a change in the
dipole moment of the molecule will be "IR active” (visible
during FTIR spectroscopy)

>>> Mononuclear molecules (Ar, Ne...) and symmetrical
molecules (O,, N,...) will not be detectable by FTIR

. Absorption pattern (frequencies absorbed and intensity of
the absorption) is unique for a given molecule

>>> Qualitative analysis is possible

>>> Quantitative analysis is possible




FTIR spectrometer: the interferometer

from IR source

—>—l—<—>—

to Detector

From IR radiation with many waves to a single wave varying over time (interferogram)

>>> FTIR can analyse all frequencies simultaneously!




FTIR spectrometer: the other components

 The IR source: IR lamp (spectral region 2.5 to 10 ym)
— Visible range i1s under 1 um
 The interferometer: modulation of the IR light

« The sample cell: 2 heated cells depending on the application

 The detectors: DTGS (Deuterated Triglycine Sulfate)
MCT (Mercury Cadmium Telluride)

 The Fourier Transform ft) =7 1(F)t) = V% / F(w)e™ dw.

Interferogram >>>IR spectrum




IR spectrum and some notions

Absorbance:
A =log,, (I/D

Wavenumber:
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What can we get from a spectrum?
[dentificatinn
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What can we get from a spectrum?
Quantification

The Beer-Lambert law i1s the linear relationship between
absorbance and concentration of an absorbing species:

abzorbing sample of
A = gxb*c

I concentration ¢ I
0

- =

~#— path lengthb —»

A: absorbance

T: transmittance; A: wavelength

A= 10g10 (IO/D

A =log, (1/T); A = log;, (100/%T)

T =1I/],

b: the path length of the sample, that is to say the distance the light has to
perform through the sample

c. concentration of the sample

e is the extinction coefficient (absorptivity coefficient)

¢ 1S substance—-specific and function of the wavelength

>>> Possible to build calibration curves
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Data treatment from FTIR:

How to built a calibration method
1. List of main expected compounds

2. Recording of single-compound spectra of all the expected
compounds
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Data treatment from FTIR

3. Check for overlapping/interferences between the various
compounds
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Data treatment from FTIR

4. Choice of wavenumber window where no interferences/overlapping
are taking place => Only one compound is absorbing
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Data treatment from FTIR

5. Recording single—compound spectra at various concentrations
(highly pure calibration gases are needed). A sufficient number of
calibration points (10 typically) over the whole working range are
essential as the Beer—-Lambert law is not applicable at all

] 10 CO spectra
ranging from 1.21 to
12.1%
o | Non-linearity is
| | obvious

Absorbance / Wavenumber (cm-1) Overlay Z-Zoom CURSOR

File #10 = S2A1607 10.02.2005 16:07 Res=None

Obtained with a gas
mixing/dilution rigg




Data treatment from FTIR

6. Recording of height of area of the
selected peak(s) at the 10
concentrations
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Data treatment from FTIR

Example: HCN "low range”

350 -
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[HCN] (ppm)
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Peak height at 3372.29-3374.7 cm-1

Linear relationship! Beer—-Lambert law applicable




Data treatment from FTIR

HCN ”high range” 2000 |

1800 -

1600 - —e— area (3374.7-3372.29)
1400 - —=— height (3374.7-3372.29)

Non-linearity! 1200 -
1000 -
800 -

600 -

[HCN] (ppm)

400 +
200 +
0

0 0.05 0.1 0.15 0.2 0.25

The linearity of the Beer—Lambert law is limited by chemical and instrumental
factors.

The most common causes of non—linearity are, amongst others:

 Deviations in extinction coefficients at high concentrations due to
interactions between molecules in close proximity

 Scattering of light due to particulates in the sample
 Fluorescence or phosphorescence of the sample




Data treatment from FTIR

 After this calibrations, it is now time to treat the
experimental results as described here:

1. Run a successful experiment
2. Collect the raw spectra recorded by the FTIR

3. With the help of the FTIR software, measure the height and
area of the selected peak(s)

4. Using the calibration curve (best—fitting polynome),
calculate the resulting concentrations

5. These data can be now integrated to determine C-
conversion to gas species, total mass of gas produced...




Data treatment from FTIR

Some important limitations:

* A > 1 not suitable for quantification analysis

Absorbance above 1 can not be used for quantification as this
reflects the fact that all the light has been absorbed by the sample.
Therefore one should choose a peak with an height less than 1 for
the whole measuring range. This problem may of course occur at
high sample concentrations.

« The non-linearity may have serious consequences at high
concentrations. At high concentration, the correlation between
area/height value and concentration is such that a minor increase

1in absorbance i1s leading to a thqfanhal iNcreace 1h ocnohcentration

111 UiVUUIL YvAalluv v 1v 1vaudllilyey u Wwiltlilillidll 1i1iuvi vAavwuw 111 vvillv vililiululdl AdLivilii,.

This very high sensibility makes quantification difficult as the
slightest shift/fluctuation/discrepancy can influence dramatically
the calculated concentration.




Data treatment from FTIR

Some important limitations (continued)

It 1s sometimes NOT possible to find a proper analysis window for
a compound. It this case it is necessary to manipulate the raw

spectrum in order to "remove’ the interferences caused by
another species "X”.

This operation is called "spectral subtract” and can be written as:

Resw file = Sample file — (Subtr7hend file x SubtrAction factor)

9
clean spectru

Interfering species X spectrum fknown concentration
(X1,

Raw spectrum
(calculated [X])

X1/ [X]g




Data treatment from FTIR

Absorban

I

Spectral subtract: an example
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Data treatment from FTIR

HCN AFTER spectral subtract >
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Gas Chromatography

(Gas chromatography is an analytical method which separates
complex mixture of chemicals by their distribution between two
phases: a stationary phase (solid or liquid) and a mobile phase

(gas).
o Mobile phase
& H &
°,® By ~P ”




A Gas Chromatograph

M aleprave inn
(Ovn-systetn

Betegass o - - Fesultat
In]eltfspns- o Elolonme- g Ventil- e Eolorme- [ Detektor A olgnal- ;
wentil systern systern systern behandling
Y Y
M aleprave ut Uanskede stoffer (gasser)

*Injeksjonsventil spyler prgvegass sammen med beseregassen gjennom
et lite indre volum fgr kolonnen

Kolonnen har den evnen til & separere de forskjellige molekyltypene

*Ventilsystem er den eneste bevegelig del 1 en GC. Den bestemmer
hvilken retning gassen skal gd 1 et system med flere kolonner

*Ovn sgrger for stabile temperaturomgivelser rundt de forskjellige
komponentene

Detektor omgjgr konsentrasjon til et signal som kan tolkes av en
datamaskin. Det finnes flere typer som bruker forskjellige metoder for
4 kvantifisere gassmengden

*TCD-Thermal Conductivity Detector




A chromatogram
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1 Propane

2 Propylene

3 1so—Butane

4 normal-
Butane

b trans—2-
Butene

6 1-Butene

7 1so—Butene

8 cis—2—-Butene
9 neo—Pentane
10 iso—Pentane
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Elution time is characteristic of a compoundButadiene

>Qualitative analysis

*Area/height of the peak is proportional to the amount of

product

>Quantitative analysis




Our GCs: CP 4900 micro GC

. High resolution/ High speed
. On-line (sampling pump)
. Portable (field measurements) XN
. 1-4 independent channels per GC
. Columns: MS5, PPQ and PPB n
. Detectors: TCD (Thermal Conductivity Detector)
DMD (Differential Mobility Detector)

. Compounds measured: CO,, CH,, C,H,+ C,H, and C,Hg

H,, O,, CH,, CO and N,

H,S, COS and more!

In order to optimise separatmr/r‘leasw ement of compounds:
. Type of column (material, length, diameter...)
. Column module parameters: temperature, pressure, gas carrier

. Detector (detection limit, compound response...)




How can we influence compound separation I
 Column dimension
— Increasing the length and decreasing the diameter will
guarantee better component separation but it means also
that the different components will take more time to go
through the column

— The type of column is important as well, for instance a
Molseive column 1s good at separation of compounds such
as H2, 02, N2, CO and CH4. Higher hydrocarbons will take
quite a long time to go through the column and will disturb
measurement in case the GC is set to continuous operation
mode. In worst case it could ruin the column. A solution for
this 1s to have a small column before that will roughly
separate hydrocarbons from the rest of the compounds. A
system with back flush will prevent hydrocarbons from
entering the column.

— The PoraPlot column 1s better suited for light hydrocarbons
(up to Cb can be separated with this column) but will not be
able to separate HZ, O2, N2, and CO. Such compounds will
go straight through and will show up as a large top at the
beginning of the chromatogram.




How can we influence compound separation II
e Column temperature [2C]

— Increasing the temperature will result in higher tops (better
in case of short tops that can be disturbed by signal noise),
less separation and shorter sampling time

« Injection time [ms]

— This decides how long a valve will open to allow the
sample gas into the column

— Increasing the injection time will result in less separation
and higher tops. It also has a small effect on sampling time

e Column pressure [kPa]

— An increase in pressure will make the compounds go much
faster through. Distance to the neighbor top does not
change. The tops are a little higher
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. IT.Hﬁrnn.:'u»u;nﬂ'ﬁ Si‘:,: T
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When a chromatogram 1is —
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LI3ta ries -
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Calibration curve: Mini LNG_GC1 - CH4 n I B
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When the integration events are decided and the baseline 1s drawn. The
area for the different tops can be calculated.

When we record a chromatogram with known concentration the area can
be related to this concentration and a calibration curve can then be
constructed

For a TCD detector the relation between the gas concentration and the
area 1s as we can see quite linear.
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For the DMD detector the relation is not that linear.

As we can see the DMD detector will get saturated and will not be able to
detect higher concentrations

The developers of this detector claim that it is quite linear in the lower range
of the scale




Some differences between how a GC works compared to a FTIR

A FTIR takes a snap shot of the

absorbed laser intensity of the sample.

This snap shot contains all the
information needed to determine the
gas concentration of the sample.

The FTIR has fixed parameters; cell
temperature or laser strength are
predefined.

This means that with a FTIR one can
wait for the calibration until after the
experiment.

Because of overlapping between the
different molecules in the absorption
of the laser intensity the calibration of
an FTIR is more complicated.

Depending on the cell length the

sampling time can vary from 20 to 60s.

The FTIR needs large quantity of

\NT1/ .

sample gas (5 Nl/min)

A GC needs to pre—treat the sample in
order to be able to measure any
concentration.

The GC has several parameters that can
be varied depending on gases that are
present in the sample

With the GC one needs to ensure a total
component separation before the
experiment.

In fact depending on the gas types of
interest, one should make decisions prior
to the purchase of the instrument.

For example the type of column to buy,
the length of the column and the
diameter are important factors to
consider.

Sampling time of the GC depends on
column type and dimension and other
variables like column temperature and
pressure. It can vary from 30 s to 30
min.

The GC does not need more than 30
ml/min for the gas sampling




